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Abstract. We compare various modifications of general relativity theory (GRT) from the 
viewpoint of the equivalence principle. In GRT, gravitational collapse and the classical 
particle problem are closely connected with Einstein’s version of the strong principle of 
equivalence. I t  is argued that theories which violate that principle or start from its 
’telescopic’ formulation might avoid collapse. On the other hand, one should invoke 
Einstein’s equations with fourth-order corrections in order to solve the classical particle 
problem. 

There exist in GRT two fascinating problems closely connected with the strong principle 
of equivalence, namely the gravitational collapse and the classical particle problem. 
Gravitational collapse leads inevitably to a singularity (more precisely, to a dynamic 
singularity) and all models of classical particles are necessarily described by (potential- 
theoretical) singularities. 

To express more clearly the link between the equivalence principle and the 
singularities, we first consider a plausible argument for the occurrence of gravitational 
collapse in the Newtonian language. The strong principle of equivalence may then be 
written as 

m l  = mA = mp (1) 
where mI is the inertial, mA the active gravitational, and mp the passive gravitational 
mass. 

It is our object to consider a simple model of a gravitating mass. If its inertial mass is 
increased by additional baryons, then the active gravitational mass too grows automa- 
tically by reason of equation (1)-up to the point in time when the inner pressures are 
unable to stabilise self-gravitation. This situation does not cogently lead, in Newtonian 
theory, to dynamic singularities, because the fundamental laws of this theory do not 
furnish any restrictions with regard to the equations of state. In contrast, special 
relativity theory implies conditions on these equations resulting from the principles of 
causality and locality, and therefore the relativistic generalisation of equation (1) 
simultaneously imposes conditions for density and pressure-such that not all 
sufficiently large distributions of mass can be in a stable state. By the same token, the 
self-forces affect the ‘collapse” of the gravitational elementary field sources. 
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The most general-relativistic version of equation (1) (strong principle of 
equivalence) demands: (i) that the components of the metric g,, are the only functions 
describing gravitation; (ii) that the gravitational equations derive from a variational 
principle. If we confine ourselves to dealing with field equations of second order, this 
equivalence principle admits Einstein's field equations alone, namely, 

RL -;8LR= (-8rG/c4)T;. ( 2 )  

As a consequence of equation ( 2 ) ,  the inertial mass (Tolman 1934) 

( t ;  is Einstein's pseudotensor) of isolated quasistatic objects is equivalent to the active 
gravitational mass mA, determined by the third law of Kepler. Consideration of 
mI= mp, followingt from 

TL ,,, = 0 (4) 
shows that GRT indeed generalises equation (1). 

In order to avoid gravitational collapse one should attempt to work with second- 
order derivative equations which differ from Einstein's equations, the reason being 
that, as the plausibility argument mentioned above demonstrated, one has to surrender 
the strong principle of equivalence. But field equations of fourth order stemming from 
the variational principle 

6 J--g[12(~R,,Rp" +PR2)+  R]d4x = 0 ( 5 )  

are hardly suitable, because they are again a realisation of the strong principle of 
equivalence. A theory invoking equation ( 5 ) ,  is, however, interesting with regard to the 
particle problem. 

Let us consider some modifications of GRT to attain a gravito-dynamics where the 
quasi-Newtonian attraction tends to zero in regions of extremely large masses and 
densities, or even goes over into repulsive forces. The necessary modifications of the 
Poisson equation 

A 4  = 47rGp (6) 
and of Einstein's equations ( 2 ) ,  respectively, may then be realised by changing the 
coupling between gravitation and matter. 

First, it is possible to replace the right-hand side of equation (6) by the term & / e 2 .  A 
general-relativistic formulation of such a potential-like coupling of gravitation and 
sources was accomplished with the aid of tetrad theories of gravitation (Treder 1971). 
In those theories, the gravitational potential is described by the tetrads h:' connected 
with the metric g,, via 

(7) 
A B  h,h T A B  = &. 

The relativistic correlate of pq5/c2 now reads: 

( h t  - 8t)T:. 

t The mass mI dealt with here is indeed identical with the mass mI defined by equation (3), because equation 
( 4 )  is a consequence of the field equations (2) and thus of the fact that equation (2) derives from a variational 
principle. 
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From equation (8) it is evident that.the pure vacuum part, appearing on the right-hand 
side of the gravitational equations, will be entirely different from the Einstein tensor. In 
Treder’s tetrad theory, this part is constructed in such a manner that the g,,  in the linear 
approximation of the gravitational equations result in the Newtonian-Einstein vacuum. 

Second, it is possible to modify the coupling without changing the Einstein vacuum. 
To this end one has to resort to a new universal constant L of the dimension of length, so 
that the source term may be corrected by terms proportional to differential operators 
acting upon the gravitational field. The Poisson equation must then be changed into 

A 4  = 4 r G b  +P(L2/c2)(A4)p1. (9) 

Such an ansatz may be formulated relativistically by adding crossing terms to 
Einstein’s equations which are bilinear in the curvature tensor RWwap and the matter 
tensor T,,,, e.g., LZR,,,,TUP, L2g,,RapTap : 

R,, - h R =  - K ( T @ ,  + L28,,), 

where 

e,, = a ~ , a p Y ~ a P  + pg,yRaBTaP + . . . (10) 

and a, p are dimensionless numbers (Liebscher et a1 1977). 
Both modifications differ in that the first becomes physically significant for strong 

potentials 14l(q5 2: c’), and that the second balances Newtonian attraction for large 
densities (pL4Gp/c2 2: 1). Nevertheless, both modifications are analogous in that they 
violate the strong principle of equivalence, though in a different manner. The first 
breaks the equality mA = mr, because it satisfies equation (4), but uses more functions 
than the ten g,,  to describe gravitational fields. The second breaks the equality 
m: = mp, since from equation (10) it follows that T,Ty # 0. 

The modifications (8) and (10) are chosen such that in the vacuum those theories 
lead to either the Laplace equation A 4  = 0 or to the Einstein equations R,, = 0. The 
modified gravitational potential in the interior of matter distribution manifests itself in 
the exterior of masses only by the conditions which result from joining vacuum and 
matter solutions. Indeed, the right-hand side of equation (9) may be developed in a 
series beginning with the terms 47rG(p +47rGL2Pp2/c2) so that, if one invokes Green’s 
theorem, equation (9) yields for the effective gravitational mass 

) p  d3x. 
47rGL’Pp 

G M = G [ ( I +  C 2  

For p <0, G M <  G J p  d3x. 
In order to solve the classical particle problem, one has to resort to equations 

modifying strongly the Einstein vacuum R,, = 0 at short distances. Only if one employs 
such equations can one hope to find regular vacuum solutions (solitons) representing 
field models of particles. Of course, there is the restriction that for large distances these 
equations give the Newton-Einstein vacuum as an approximate solution. These 
considerations suggest the unitary field equations stemming from the Lagrangian 
(Treder 1977, von Borzeskowski et a1 1978) 

2 = C d R +  LZ(aR,yRLIY +PR2)+ higher-derivative invariants] (12) 

containing equation ( 5 )  as a particular case. Those equations also furnish other vacuum 
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solutions as well as the special Einstein spaces R,, = 0. Accordingly the elementary 
solution of the linearised version of this theory 

(13) Aq5 - L2A2q5 = 0 

is given by the regular Green function 

4 ( l / r ) ( l -  exp(-r/L)). 

The modified equations following from the Lagrangian (12), written symbolically as 

A,, L2H,, + (R,,, -ig,,R)= 0 (14) 

possibly eliminate potential-theoretical singularities from the gravitational theory. 
Such a possibility is plausibly supported by the fact that the quantised equations are 
renormalisable (Utiyama and DeWitt 1963, Deser 1976, Stelle 1977). If one does not 
choose the constant L appearing in equation (12) as a new fundamental constant, but as 
Planck’s length ( ~ G / c ~ ) ” ~ ,  then this theory may be interpreted as some phenomenolo- 
gical consequence of quantised GRT (von Borzeszkowski et a1 1978). 

Since equation (14) follows from a variational principle, the differential identity 
A,;” = 0 is satisfied. Accordingly, for matter coupled to gravitation, the equation 
T,:, = 0 is also satisfied, in contrast to the theory given by equation (10). This results 
from the validity of the strong principle of equivalence. 

Finally, in this connection a different approach to solve the problem of gravitational 
collapse ought to be mentioned. As was already noted above, the modification in tetrad 
theories becomes physically significant for q5 = c , i.e. for 2 

GM/c2=Gpr3 /c2s r .  (15) 

Since the condition (15) states that the modification of the gravitational potential 
becomes effective if the gravitational radius GM/c2 is greater than the geometric 
dimension of the object in question, the tetrad theories contain a dependence upon the 
global properties of the system. This theory resembles in this respect the situation one 
encounters in the so-called Riemann-Mach mechanics proposed by Treder to formu- 
late the Mach-Einstein doctrine (Treder 1972). 

A mechanics of this kind attributes the inertial mass 

m* = m(1 +2p14l/c2) (16) 

to each particle of a distribution of mass possessing the average gravitational potential q5 
(p  is a numerical constant). Gravitational collapse is therefore prevented, because the 
maximal velocity of particles produced by gravitation can never exceed the value 
(c” ’~ ’ ’ )  (for p > 1). This effect results directly from Mach’s principle expressing an 
induction of inertia by the gravitational potential, in the sense that an increase of the 
gravitational potential is always accompanied by an increase of inertia. In the interior 
of a system with the Newtonian total mass M = Nm ( N  =particle number), gravitation 
has an effect which corresponds, according to Newton’s second law, to a mass 

There exist t he re fo re4ue  to the equilibrium between gravitation and induced 
inertia-stable configurations of astrophysical objects. Looked at from the exterior, 
the system acts upon other objects in such a manner that all its masses (gravitational and 
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inertial) are identical. Hence the Mach-Einstein doctrine is a cosmological realisation 
of the strong principle of equivalence. 

To sum up, we should emphasise the following fact: In  order to solve the problem of 
gravitational collapse without surrendering Einstein's strong principle of equivalence, 
the cosmological approach is the most attractive one. But to solve the particle problem 
by having recourse to this principle, it seems most promising to invoke the Einstein 
equations with fourth-order derivative corrections. All other modifications of GRT 

prove to be less satisfactory, since they violate the strong principle of equivalence. 
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